A geometric approach to maximum likelihood estimation of the functional principal components from sparse longitudinal data

نویسندگان

  • Jie Peng
  • Debashis Paul
چکیده

In this paper, we consider the problem of estimating the eigenvalues and eigenfunctions of the covariance kernel (i.e., the functional principal components) from sparse and irregularly observed longitudinal data. We approach this problem through a maximum likelihood method assuming that the covariance kernel is smooth and finite dimensional. We exploit the smoothness of the eigenfunctions to reduce dimensionality by restricting them to a lower dimensional space of smooth functions. The estimation scheme is developed based on a Newton-Raphson procedure using the fact that the basis coefficients representing the eigenfunctions lie on a Stiefel manifold. We also address the selection of the right number of basis functions, as well as that of the dimension of the covariance kernel by a second order approximation to the leave-one-curve-out cross-validation score that is computationally very efficient. The effectiveness of our procedure is demonstrated by simulation studies and an application to a CD4 counts data set. In the simulation studies, our method performs

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consistency of Restricted Maximum Likelihood Estimators of Principal Components by Debashis Paul1 And

In this paper we consider two closely related problems: estimation of eigenvalues and eigenfunctions of the covariance kernel of functional data based on (possibly) irregular measurements, and the problem of estimating the eigenvalues and eigenvectors of the covariance matrix for highdimensional Gaussian vectors. In [A geometric approach to maximum likelihood estimation of covariance kernel fro...

متن کامل

Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model

Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...

متن کامل

Comparison of Local and Non-Local Methods in Covariance Matrix Estimation by Using Multi-baseline SAR Interferometry and Height Extraction for Principal Components with Maximum Likelihood Approach

By today, the technology of synthetic aperture radar (SAR) interferometry (InSAR) has been largely exploited in digital elevation model (DEM) generation and deformation mapping. Conventional InSAR technique exploits two SAR images acquired from slightly different angles, in which the information of elevation and deformation can be captured through processing of the phase difference of the image...

متن کامل

Functional Data Analysis for Sparse Longitudinal Data Short title: FDA for Sparse Longitudinal Data

We propose a nonparametric method to perform functional principal components analysis for the case of sparse longitudinal data. The method aims at irregularly spaced longitudinal data, where the number of repeated measurements available per subject is small. In contrast, classical functional data analysis requires a large number of regularly spaced measurements per subject. We assume that the r...

متن کامل

Functional Data Analysis for Sparse Longitudinal Data

We propose a nonparametric method to perform functional principal components analysis for the case of sparse longitudinal data. The method aims at irregularly spaced longitudinal data, where the number of repeated measurements available per subject is small. In contrast, classical functional data analysis requires a large number of regularly spaced measurements per subject. We assume that the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007